SPREAD SPECTRUM SYSTEMS
WITH
COMMERCIAL APPLICATIONS
ROBERT C. DIXON

SUMMARY
The spread spectrum world has changed radically since the last edition of this classic professional resource was published. Now military applications have levelled off commercial applications have taken off and numerous consumer products are in development. This new edition keeps you right up to date with…

A complete new section on commercial applications-featuring direct sequence versus frequency hopping operation below ambient noise level error correction coding near-far performance linear signal requirements and synchronisation

- Full treatment of CDMA—including the number of signals to a band-width frequency division multiplex time-division multiplex code division multiple access receiver sensitivity multipath rejection direct sequence fading rate and more

- Coverage of relevant FCC regulations-presenting excerpts from FCC regulations concerning spread spectrum and low-power operation in the ISM bands a summary of Part 15 of the Spread Spectrum Rules and a discussion of spread spectrum operation by radio amateurs

- Details on current consumer and commercial systems

Essential to the next generation of mobile cellular cordless and other personal communications systems... vital to the future of communications data transmission message privacy signal hiding and position location spread spectrum technology has never been so important to professionals in the field.

CONTENTS

PART I GENERAL SPREAD SPECTRUM SYSTEMS

1 The Whats and Why's of Spread Spectrum Systems 3

1.1 What Is a Spread Spectrum System? 3
1.2 Why Bother? 9
1.3 Process Gain and Jamming Margin 10

2 Spread Spectrum Techniques 18

2.1 Direct Sequence System
Characteristics of Direct Sequence Signals 18
Radio-Frequency Bandwidth in Direct Sequence Systems 19
Direct Sequence Process Gain 24
Direct Sequence Code and Spectrum Relationships 28
The Minimum Shift Key Technique 30

2.2 Frequency Hopping
Characteristics of Frequency Hopping Signals 32
Determining Frequency Hopping Rate and Number of Frequencies 36
Avoiding the Repeat Jammer 44

2.3 Time Hopping 46

2.4 Pulsed FM (Chirp) Systems
Characteristics of Chirp Signals 48

2.5 Hybrid Forms
Frequency Hopped/Direct Sequence Modulation 50
Time-Frequency Hopping 51
Time-Hopping Direct Sequence 55
3.1 Maximal Sequences
Run-Length Distribution
Autocorrelation
Linear Addition Properties
State Exhaustion
3.2 Linear Code Generator Configuration
3.3 Autocorrelation and Cross-Correlation of Codes
3.4 Composite Codes
Gold Code Sequence Generators
Syncopated-Register Generators
JPL Ranging Codes
3.5 Chip Rate and Code Length
3.6 Choosing a Linear Code
3.7 Generating High Rate Codes
3.8 Software-Implemented Codes
3.9 Code Selection and Signal Spectra
3.10 Code Baseband Spectra
3.11 Error Detection and Correlation Codes

4 Modulation and Modulators: Generating the Wideband Signal
4.1 Balanced Modulation
Effects of Carrier and Code-Rate Spurious (Lack of Suppression)
Quadriphase Modulation
Carrier Modulation Trade Offs
Effect of Synch Acquisition
Sidelobe Energy Output
4.2 Frequency Synthesis for Spread Spectrum Modulation
Indirect Synthesis
Synthesis from Digital Words
4.3 Sending the Information
Carrier Modulation
Clock Rate Modulation
Code Modification
Digitizing Methods
Frequency Hopping Code Modifiers

5 Correlation and Demodulation
5.1 Remapping the Spread Spectrum
In-Line Correlation
Heterodyne Correlation
Code Timing Effects on Correlation
5.2 Effect of Nonsynchronous Input Signals
Correlator Output with Interference
Direct Sequence Reaction to Interference
Frequency Hopping Reaction to Interference
5.3 Baseband Recovery
Phase-Lock Loops
Squaring Loops
Costas Loop Demodulation
Frequency Modulation Feedback Demodulators
PDM Demodulation
Frequency Hopping Demodulation
Integrate-and-Dump Filters
The Dehopped Signal
M-ary Detection

6 Synchronization
6.1 Sources of Synchronization Uncertainty
Initial Synchronization
The "Sliding" Correlator
Synchronization Preambles
Frequency Hop Synchronization
Transmitted-Reference Methods
Universal Timing
Burst Synchronization
Sequential Estimation
Special Coding for Synch Acquisition
Matched-Filter Synchronizers
Synch Recognition
6.2 Tracking
Tau-Dither Tracking
Delay-Lock Tracking
Delay-Lock Tracking 259
Coherent Carrier Tracking 260
Split-Bit Tracking 263
Coherent Loss Due to Bandpass Filtering 264

7 The RF Link 267
7.1 Noise Figure and Cochannel Users 268
7.2 Dynamic Range and AGC 272
7.3 The Propagation Medium 278
Line-of-Sight Loss 278
Adsorptive Losses 280
Differential Phase Delay 280
Multipath 281
7.4 Overall Transmitter and Receiver Design 285
The Transmitter 285
Power Amplification 287
VSWR 289
Receiver RF Considerations 289
Receiver Signal Handling Capacity 290
Wideband Front Ends 291
The Ideal RF Section 291
Bandwidth and Phase-Shift Effects 295

8 Navigating with Spread Spectrum Systems 297
8.1 Ranging Techniques 297
Tone Ranging 301
Sources of Range Error 302
Frequency Hopping Range Measurement 304
More on the Selection of a Clock Rate 304
Selecting the Ranging Code 306
Hybrid-Ranging System 307
8.2 Direction Finding 312
Special Antennas 312

9 Applications of Spread Spectrum Methods 319
Space Systems 319
Avionics Systems 330
Test Systems and Equipment 335
Message Protection 338
Position Location 338
Real Systems 340

10 Test and Evaluation of Spread Spectrum Systems 341
Sensitivity 341
Selectivity 343
Jamming Margin 344
Synch Acquisition 346
Loss of Synchronization 346
Signal-to-Noise Ratio vs. Interference Level 347
Process Gain 347
On Testing Spread Spectrum Systems to Determine Their Process Gain 348
The FCC Method 352
Cross Correlation 352
Transmitter Measurements 353
General 355

PART II COMMERCIAL APPLICATIONS OF SPREAD SPECTRUM SYSTEMS 359

11 Tradeoffs in Commercial Applications of Spread Spectrum Systems 361
Excerpt from FCC Regulations Concerning Spread Spectrum and Low Power Operation in the ISM Bands 361
Summary of Part 15 Spread Spectrum Rules 365
Spread Spectrum Operation by Radio Amateurs 365
11.1 Comparison of Military and Commercial Advantages of Spread Spectrum 366
11.2 Direct Sequence Versus Frequency Hopping 367
Range Resolution 368
Interference to Other Systems 368
Operation Below Ambient Noise Level 370
Error Correction Coding 371
Near-Far Performance 374