SUMMARY

This book is a comprehensive text on the spectral domain method for microwave integrated circuits. It treats this commonly used computer method from a very basic level through examples, and introduces its advanced applications in simple words. It provides the reader with an up-to-date detailed account of the technique, which is not usually accessible in research journals. The book provides useful explicit commuting efficiency, alternative forms of the spectral domain method and its new applications to complex MIC transmission lines, planar resonators, periodic structures, antennas etc. It contains a set of useful computer codes for quick appreciation of the techniques and its capabilities. (These programs are available on disk from the author.)

The book can be used as a textbook for teaching the method to engineering or physics students, or as a self-teaching source and reference book for practising engineers and scientists.

CONTENTS

Foreword xi
Preface xiii

Chapter 1 INTRODUCTION
1.1 Microwave Integrated Circuits (MICs) 1
1.2 Electromagnetic Field Problems in MICs 4
1.3 The Spectral Domain Technique 7
References 9

Chapter 2 BASIC EQUATIONS AND CONCEPTS
2.1 Maxwell's Equations 11
2.2 Constitutive Relations 12
2.3 Boundary Conditions 12
2.4 Edge Condition 14
2.5 Potential Functions 19
References 22

Chapter 3 INTRODUCTION TO THE SPECTRAL DOMAIN TECHNIQUE
3.1 Microstrip Line and the Spectral Domain Technique 23
3.2 Spectral Domain Formulation of Microstrip Lines 25
3.2.1 Potential Functions in the Fourier Domain 26
3.2.2 Boundary Conditions in the Space and in the Fourier Domain 29
3.2.3 Final Equations in the Fourier Domain 31
3.2.4 Final Equations in the Space Domain 34
3.3 Methods of Solution of the Final Equations 38
3.3.1 Point Matching (Point Collocation) Method 38
3.3.2 The Method of Moments 43
3.3.2.1 Galerkin Technique in the Space Domain 45
3.3.2.2 Galerkin Technique in the Spectral Domain

References

Chapter 4 EFFICIENT COMPUTING AN APPROXIMATIONS IN THE SPECTRAL DOMAIN TECHNIQUE

4.1 Basis Functions 53
4.2 Approximate Solutions 53
4.3 Relations among Elements of the Coefficient Matrix 63
4.4 Alternative Spectral Domain Green's Functions 66
4.5 Acceleration of the Computation of the Matrix Elements 70
References 72

Chapter 5 QUASI-TEM ANALYSIS BY THE SPECTRAL DOMAIN TECHNIQUE AND SOLUTION OF MULTISTRIP TRANSMISSION LINES

5.1 Quasi TEM Spectral Domain Formulation of the Microstrip 75
5.2 Spectral Domain Solution of Multistrip Single-Substrate Transmission Lines 80
 5.2.1 Asymmetric Coupled Microstrip Lines 81
 5.2.2 Multiconductor Microstrip Lines 84
References 87

Chapter 6 SPECTRAL DOMAIN SOLUTION OF MULTILAYER MULTICONDUCTOR PLANAR TRANSMISSION LINES

6.1 Spectral Domain Solution of Multilayer Transmission Lines with Coplanar Conductors Using Transfer Matrix Approach 91
6.2 Three Layer Planar Transmission Lines with Coplanar Conductors 100
 6.2.1 Coplanar Waveguides 104
 6.2.2 Inverted Microstrip Lines 107
 6.2.3 Finlines 108
6.3 Spectral Domain Solution of Multilayer Transmission Lines with Multilayer Conductors 117
 6.3.1 Coupled Strip Finline Structure 121
6.4 Other Approaches for Generating the Spectral Domain Green's Functions of Multilayer Multiconductor Planar Transmission Lines 129
References 137

Chapter 7 MISCELLANEOUS APPLICATIONS OF THE SPECTRAL DOMAIN TECHNIQUE

7.1 Solution of Microstrip-Type Resonators 141
7.2 Solution of Microstrip Patch Antennas 150
7.3 Solution of Planar Structures with Periodic Metallisation 160
7.4 Solution of Scattering from Planar Structures 168
7.5 Solution of Planar Structures with Lossy and/or Anisotropic Substrates 172
References 179

Appendix I FOURIER TRANSFORMS

I.1 Expansion of Periodic Functions in terms of Trigonometric Functions (Fourier Series) 185
I.2 Fourier Series of Odd and Even Functions 186
I.3 Half-Range Expansions 187
I.4 Finite Fourier Transform 188
I.5 Fourier Integral and Fourier Transform 189
I.6 Fourier Transforms of the Derivatives of a Function 189
I.7 Parseval's Identities 190
References 190

Appendix II LINEAR INTEGRAL EQUATIONS

II.1 Classification 191
II.2 Types of Kernels 192
II.3 Green's Function and its Role in Integral Equations 194
References 196

Appendix III COMPUTER PROGRAMS

III.1 Computer Program MRST1 199
III.2 Subroutine MGNTW 200
III.3 Subroutine ANPDL 210
III.4 Subroutine MSCL2 211
III.5	Listing of MRST1	212
III.6	Sample Input and Output	224
III.7	Listing of MGNTW	228
III.8	Listing of ANPDL	231
III.9	Listing of MSCL2	234
	Références	237
	Index	239