DIGITAL SPECTRAL ANALYSIS
WITH APPLICATIONS
S.LAWRENCE MARPLE, JR.

SUMMARY

This new book provides a broad perspective of spectral estimation techniques and their implementation. It concerned with spectral estimation of discrete-space sequences derived by sampling continuous-space signals. Among its key features, the book:

· Emphasizes the behavior of each spectral estimator for short data records.
· Provides 35 computer programs, including fast algorithms.
· Provides the theoretical background and review material in linear systems, Fourier transforms matrix algebra, random processes, and statics.
· Summarizes classical spectral estimation as it is practiced today.
· Covers Prony’s method, parametric methods, the minimum variance method, eigenanalysis-based estimators, multichannel methods, and two-dimensional methods.
· Includes problems.
· Contains appendices that cover Sunspot Numbers, Complex Test Data, Temperature Data, and Program Conversion for Complex-to-Real Case.

Of Special Interest
A disk is included that has a double-sides 360kB format readable by any personal computer with an MS-DOS 2 or 3 operating system, such as the IBM XT or AT.

CONTENTS

NOTATIONAL CONVENTIONS XIII
GLOSSARY OF KEY SYMBOLS XIV
PREFACE XVII

1 INTRODUCTION 1
1.1 Historical Perspective 3
1.2 Sunspot Numbers 13
1.3 A Test Case 16
1.4 Issues in Spectral Estimation 17
1.5 How to Use This Text 21
References 22

2 REVIEW OF LINEAR SYSTEMS AND TRANSFORM THEORY 25
2.1 Introduction 25
2.2 Signal Notation 26
2.3 Continuous Linear Systems 26
2.4 Discrete Linear Systems 28
2.5 Continuous-Time Fourier Transform 31
2.6 Sampling and Windowing Operations 34
2.7 Relating the Continuous and Discrete Transforms 37
2.8 The Issue of Scaling for Power Determination 42
2.9 The Issue of Zero Padding 43
2.10 The Fast Fourier Transform 44
2.11 Resolution and the Time-Bandwidth Product 46
References 49
Problems 50
Appendix 2.A Source of Complex-Valued Signals 51
Appendix 2.B Wavenumber Processing with Linear Spatial Arrays 53
Appendix 2.C Fast Fourier Transform Program 54
3 REVIEW OF MATRIX ALGEBRA

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.2</td>
<td>Matrix Algebra Basics</td>
</tr>
<tr>
<td>3.3</td>
<td>Special Vector and Matrix Structures</td>
</tr>
<tr>
<td>3.4</td>
<td>Matrix Inverses</td>
</tr>
<tr>
<td>3.5</td>
<td>Least Squares Normal Equations</td>
</tr>
<tr>
<td>3.6</td>
<td>Solution of Linear Equations</td>
</tr>
<tr>
<td>3.7</td>
<td>Eigenanalysis and Singular Value Decomposition</td>
</tr>
<tr>
<td>3.8</td>
<td>The Toeplitz Matrix</td>
</tr>
</tbody>
</table>

References 92

Problems 94

Appendix 3.A Program to Solve Hermitian Linear Equations by Cholesky Method 96

Appendix 3.B Program to Find Complex Singular Value Decomposition 98

Appendix 3.C Program of the Levinson Algorithm 104

Appendix 3.D Program to Solve General Toeplitz Linear Equations 105

Appendix 3.E Program to Solve Hermitian Toeplitz Linear Equations 107

Appendix 3.F Program to Solve for Minimum Eigenvalue and Eigenvector of a Hermitian Toeplitz Matrix 109

4 REVIEW OF RANDOM PROCESS THEORY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>4.2</td>
<td>Probability and Random Variables</td>
</tr>
<tr>
<td>4.3</td>
<td>Random Processes</td>
</tr>
<tr>
<td>4.4</td>
<td>Ergodicity: From Ensemble Averages to Time Averages</td>
</tr>
<tr>
<td>4.5</td>
<td>Entropy Concepts</td>
</tr>
</tbody>
</table>

References 126

Problems 126

Appendix 4.A Bias and Variance of the Sample Spectrum 127

5 CLASSICAL SPECTRAL ESTIMATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary</td>
</tr>
<tr>
<td>5.3</td>
<td>Windows</td>
</tr>
<tr>
<td>5.4</td>
<td>Resolution and the Stability-Time-Bandwidth Product</td>
</tr>
<tr>
<td>5.5</td>
<td>Autocorrelation and Cross Correlation Estimation</td>
</tr>
<tr>
<td>5.6</td>
<td>Correlogram Method Power Spectral Density (PSD) Estimators</td>
</tr>
<tr>
<td>5.7</td>
<td>Periodogram PSD Estimators</td>
</tr>
<tr>
<td>5.8</td>
<td>Combined Periodogram/Correlogram Estimators</td>
</tr>
<tr>
<td>5.9</td>
<td>Application to Sunspot Numbers</td>
</tr>
<tr>
<td>5.10</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

References 165

Problems 166

Appendix 5.A Program to Compute Correlation Estimates 167

Appendix 5.B Program to Compute the Correlogram Method PSD Estimate 168

Appendix 5.C Program to Compute the Periodogram Method PSD Estimate 170

6 PARAMETRIC MODELS OF RANDOM PROCESSES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.2</td>
<td>Summary</td>
</tr>
<tr>
<td>6.3</td>
<td>Autoregressive (AR), Moving Average (MA), and Autoregressive-Moving Average (ARMA) Random Process Models</td>
</tr>
<tr>
<td>6.4</td>
<td>Relationships Among AR, MA, and ARMA Model Parameters</td>
</tr>
<tr>
<td>6.5</td>
<td>Relationship of AR, MA, and ARMA Parameters to the Autocorrelation Sequence</td>
</tr>
<tr>
<td>6.6</td>
<td>Spectral Factorization</td>
</tr>
</tbody>
</table>

References 185

Problems 186

Appendix 6.A Program to Compute the ARMA, AR, and MA Power Spectral Density 186

7 AUTOREGRESSIVE PROCESS AND SPECTRUM PROPERTIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>Summary</td>
</tr>
<tr>
<td>7.3</td>
<td>Autoregressive Process Properties</td>
</tr>
<tr>
<td>7.4</td>
<td>Autoregressive Power Spectral Density Properties</td>
</tr>
</tbody>
</table>

References 198

Problems 203

8 AUTO REGRESSIVE SPECTRAL ESTIMATION: BLOCK DATA ALGORITHMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
</tbody>
</table>
AUTO REgressive SPECTRAL ESTIMATION: SEQUENTIAL DATA ALGORITHMS

9.1 Introduction 261
9.2 Summary 262
9.3 Gradient Adaptive Autoregressive Methods 264
9.4 Recursive Least Squares (RLS) Autoregressive Methods 266
9.5 Fast Lattice Autoregressive Methods 272
9.6 Application to Sunspot Numbers 273
References 274
Problems 275
Appendix 9.A Program of Shift Register 275
Appendix 9.B Program of LMS Adaptive Algorithm 276
Appendix 9.C Fast RLS Algorithm and Program to Solve Exponentially Windowed Equations of Linear Prediction 276

AUTOREGRESSIVE-MOVING AVERAGE SPECTRAL ESTIMATION

10.1 Introduction 285
10.2 Summary 286
10.3 Moving Average Parameter Estimation 288
10.4 Separate Autoregressive and Moving Average Parameter Estimation 290
10.5 Simultaneous Autoregressive and Moving Average Parameter Estimation 294
10.6 Sequential Approach to ARMA Estimation 295
10.7 A Special ARMA Process for Sinusoids in White Noise 296
10.8 Application to Sunspot Numbers 297
References 298
Problems 299
Appendix 10.A Program for Estimating the Parameters of a Moving Average Model 300
Appendix 10.B Program for Estimating the Parameters of an Autoregressive-Moving Average Model 301

PRONY’S METHOD

11.1 Introduction 303
11.2 Summary 304
11.3 Simultaneous Exponential Parameter Estimation 306
11.4 Original Prony Concept 308
11.5 Least Squares Prony Method 310
11.6 Modified Least Squares Prony Method 312
11.7 Prony Spectrum 315
11.8 Accounting for Known Exponential Components 318
11.9 Identification of Exponentials in Noise 319
11.10 Application to Sunspot Numbers 324
References 325
Problems 326
Appendix 11.A Fast Algorithm and Program to Solve Symmetric Covariance Normal Equations 327
Appendix 11.B Program for Factoring a Complex Polynomial 335
Appendix 11.C Program of Prony Method 344
Appendix 11.D Program for Computing the Exponential Parameters 347
Appendix 11.E Program for Prony Energy Spectral Density 349

MINIMUM VARIANCE SPECTRAL ESTIMATION

12.1 Introduction 350
12.2 Summary 351
12.3 Derivation of the Minimum Variance Spectral Estimator 352
12 Derivation of the Minimum Variance Spectral Estimator
12.3 Derivation of the Minimum Variance Spectral Estimator
12.4 Relationship of Minimum Variance and Autoregressive Spectral Estimators
12.5 Implementation of the Minimum Variance Spectral Estimator
12.6 Application to Sunspot Numbers
References
Problems
Appendix 12.A Program of Minimum Variance Spectral Estimator

13 EIGENANALYSIS-BASED FREQUENCY ESTIMATION
13.1 Introduction
13.2 Summary
13.3 Eigenanalysis of Autocorrelation Matrix for Sinusoids in White Noise
13.4 Eigenanalysis of Data Matrix for Exponentials in Noise
13.5 Signal Subspace Frequency Estimators
13.6 Noise Subspace Frequency Estimators
13.7 Order Selection
References
Problems
Appendix 13.A Program to Compute the Eigenvector Method and MUSIC Method Frequency Estimators

14 SUMMARY OF SPECTRAL ESTIMATORS
Synopsis Table
References

15 MULTICHANNEL SPECTRAL ESTIMATION
15.1 Introduction
15.2 Summary
15.3 Multichannel Linear Systems Theory
15.4 Multichannel Random Process Theory
15.5 Multichannel Classical Spectral Estimators
15.6 Multichannel ARMA, AR, and MA Processes
15.7 Multichannel Yule-Walker Equations
15.8 Multichannel Levinson Algorithm
15.9 Multichannel Block-Toeplitz Matrix Inverse
15.10 Multichannel Autoregressive Spectral Estimation
15.11 Autoregressive Order Selection
15.12 Experimental Comparison of Multichannel AR PSD Estimators
15.13 Multichannel Minimum Variance Spectral Estimation
15.14 Two Channel Spectral Analysis of Sunspot Numbers and Air Temperature
References
Problems
Appendix 15.A Program for Multichannel Periodogram
Appendix 15.B Program for Multichannel AR Estimation by Nuttall-Strand or Vieira-Morf Algorithms
Appendix 15.C Program to Compute Multichannel Autoregressive PSD
Appendix 15.D Supporting Subroutines for Subroutines

MCAR and MCARPSD

16 TWO-DIMENSIONAL SPECTRAL ESTIMATION
16.1 Introduction
16.2 Summary
16.3 Two-Dimensional Linear Systems and Transform Theory
16.4 Two-Dimensional Random Process Theory
16.5 Classical 2-D Spectral Estimation
16.6 Modified Classical 2-D Spectral Estimation
16.7 Two-Dimensional Autoregressive Spectral Estimation
16.8 Two-Dimensional Maximum Entropy Spectral Estimation
16.9 Two-Dimensional Minimum Variance Spectral Estimation
References
Problems
Appendix 16.A Program to Compute the 2-D Periodogram
Appendix 16.B Program to Compute the First-Quadrant and Second-Quadrant 2-D Autoregressive Parameters
Appendix 16.C Program to Compute the First-Quadrant 2-D Autoregressive Spectrum

17 EPILOGUE